Automatic Classification using Self-Organising Neural Networks in Astrophysical Experiments

نویسندگان

  • Praveen Boinee
  • Alessandro De Angelis
  • Edoardo Milotti
چکیده

Self-Organising Maps (SOMs) are effective tools in classification problems, and in recent years the even more powerful Dynamic Growing Neural Networks, a variant of SOMs, have been developed. Automatic Classification (also called clustering) is an important and difficult problem in many Astrophysical experiments, for instance, Gamma Ray Burst classification, or gamma-hadron separation. After a brief introduction to classification problem, we discuss Self-Organising Maps in section 2. Section 3 discusses with various models of growing neural networks and finally in section 4 we discuss the research perspectives in growing neural networks for efficient classification in astrophysical problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

Automatic Segmentation and Classification of Outdoor Images Using Neural Networks

The paper describes how neural networks may be used to segment and label objects in images. A self-organising feature map is used for the segmentation phase, and we quantify the quality of the segmentations produced as well as the contribution made by colour and texture features. A multi-layer perception is trained to label the regions produced by the segmentation process. It is shown that 91.1...

متن کامل

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

Multidimensional data classification with artificial neural networks

Multi-dimensional data classification is an important and challenging problem in many astro-particle experiments. Neural networks have proved to be versatile and robust in multi-dimensional data classification. In this article we shall study the classification of gamma from the hadrons for the MAGIC Experiment. Two neural networks have been used for the classification task. One is Multi-Layer P...

متن کامل

Automatic landmark extraction using Growing Neural Gas (GNG)

A new method for automatically building statistical shape models from a set of training examples and in particular from a class of hands. In this method, landmark extraction is achieved using a self-organising neural network, the Growing Neural Gas (GNG), which is used to preserve the topology of any input space. Using GNG, the topological relations of a given set of deformable shapes can be le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره cs.NE/0307031  شماره 

صفحات  -

تاریخ انتشار 2003